Adolescent pregnancy: Risk factors and their impact on fetal mortality

Main Article Content

Norma del Pilar Barreno-Layedra
León Augusto Bourgeat-Terán

Abstract

This quantitative, observational, and retrospective study analyzes the risk factors associated with fetal mortality among adolescent mothers in Ecuador. Secondary data from the National Institute of Statistics and Censuses (INEC, 2022) were used, and binary logistic regression techniques were applied, along with machine learning models such as XGBoost and LightGBM, to develop high-accuracy predictive models.
The results indicate that gestational age is the main protective factor: each additional week reduces the probability of fetal death by 8.5% (OR = 0.915, 95% CI: 0.887–0.943, p < 0.001). Furthermore, a higher risk of fetal mortality was identified in mothers with fewer than five prenatal check-ups (OR = 3.24, 95% CI: 2.17–4.83) and in births that occurred outside the hospital setting (OR = 2.71, 95% CI: 1.88–3.91).
The predictive models showed high performance, with XGBoost being the most accurate (AUC = 1.000), followed by LightGBM (AUC = 0.9997). These findings highlight the need to strengthen prenatal care, improve hospital infrastructure, and use artificial intelligence tools for early detection of high-risk pregnancies in vulnerable populations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barreno-Layedra, N., & Bourgeat-Terán, L. . (2025). Adolescent pregnancy: Risk factors and their impact on fetal mortality. 593 Digital Publisher CEIT, 10(3), 364-376. https://doi.org/10.33386/593dp.2025.3.3167
Section
Investigaciones /estudios empíricos
Author Biographies

Norma del Pilar Barreno-Layedra, Universidad Politécnica Estatal del Carchi - Ecuador

barreno.jpg

https://orcid.org/0000-0003-2910-3217

Norma del Pilar Barreno Layedra has been a professor at the Universidad de las Fuerzas Armadas ESPE, Latacunga campus, since 2010. I hold a Master's degree in Basic Mathematics and a Diploma in Mathematics Teaching. I am interested in education in Algebra and Statistics. I have published studies on the impact of open-source software in teaching, Fourier analysis in engines, and facial recognition with artificial intelligence. My work has been disseminated in scientific journals and  conferences.

León Augusto Bourgeat-Terán, Universidad de las Fuerzas Armadas - ESPE - Ecuador

bourgeat.jpg

https://orcid.org/0009-0003-2457-7074

Augusto Bourgeat Terán is a professor and researcher at the Universidad de las Fuerzas Armadas - ESPE, with a distinguished career in electronic engineering, applied statistics, and machine learning. He holds a Master's degree in Research and Innovation in Information and Communication Technologies from the Universidad Autónoma de Madrid, a Master's in Applied Mathematics from the Universidad San Francisco de Quito, and an Executive Master's in Business Management with a specialization in Strategic Management. His teaching experience includes mathematics, advanced statistics, and physics, in addition to leading outreach projects and supervising research at the graduate level. He has published articles on project evaluation, global positioning systems, and physics education. Currently, he is responsible for the Graduate Program Management Section at ESPE's Latacunga campus.

References

Almache, G., Joel, C., & Isabel, E. (2025). Impact of the prenatal period and maternal role in university academic development : bibliographic review Repercusión del período prenatal y rol materno en el desarrollo académico universitario : revisión bibliográfica Resumen. 9(1), 1–27.

Berlanga-silvente, V. (2014). Cómo obtener un Modelo de Regresión Logística Binaria con SPSS. REIRE. Revista d’Innovació i Recerca En Educació, 7(8(2)), 105–118. https://doi.org/10.1344/reire2014.7.2727

Bezerra, I. M. P., Ramos, J. L. S., Pianissola, M. C., Adami, F., da Rocha, J. B. F., Ribeiro, M. A. L., de Castro, M. R., Bezerra, J. da F., Smiderle, F. R. N., Sousa, L. V. de A., Siqueira, C. E., & de Abreu, L. C. (2021). Perinatal mortality analysis in espírito santo, brazil, 2008 to 2017. International Journal of Environmental Research and Public Health, 18(21). https://doi.org/10.3390/ijerph182111671

Bhutta, Z. A., Ahmed, T., Black, R. E., Cousens, S., Dewey, K., Giugliani, E., Haider, B. A., Kirkwood, B., Morris, S. S., Sachdev, H., & Shekar, M. (2008). What works? Interventions for maternal and child undernutrition and survival. The Lancet, 371(9610), 417–440. https://doi.org/10.1016/S0140-6736(07)61693-6

Blencowe, H., Krasevec, J., de Onis, M., Black, R. E., An, X., Stevens, G. A., Borghi, E., Hayashi, C., Estevez, D., Cegolon, L., Shiekh, S., Ponce Hardy, V., Lawn, J. E., & Cousens, S. (2019). National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. The Lancet Global Health, 7(7), e849–e860. https://doi.org/10.1016/S2214-109X(18)30565-5

Breiman, L. (2001). Random Forests. 45, 5–32.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785

Dowswell, T., Carroli, G., Duley, L., Gates, S., Gülmezoglu, A. M., Khan-Neelofur, D., & Piaggio, G. (2015). Alternative versus standard packages of antenatal care for low-risk pregnancy. Cochrane Database of Systematic Reviews, 2015(7). https://doi.org/10.1002/14651858.CD000934.pub3

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Galeano, D. O., Orozco, F. A., & Urquia, M. L. (2023). Child marriage and perinatal health in Ecuador, 2015-2020; [Casamiento infantil y salud perinatal en Ecuador, 2015-2020]. Salud Colectiva, 19. https://doi.org/10.18294/SC.2023.4325

INEC. (2022). Ecuador - Estadística de Defunciones Fetales 2022 Información general. 3–9.

Instituto Nacional de Salud, & Ministerio de Salud. (2020). Mortalidad Perinatal y Neonatal Tardía, Colombia, 2020. Informe De Evento, 1–23. https://www.ins.gov.co/buscador-eventos/Informesdeevento/MORTALIDAD PERINATAL Y NEONATAL TARDÍA_2020.pdf

Mezmur, H., Assefa, N., & Alemayehu, T. (2021). An Increased Adverse Fetal Outcome Has Been Observed among Teen Pregnant Women in Rural Eastern Ethiopia: A Comparative Cross-Sectional Study. Global Pediatric Health, 8. https://doi.org/10.1177/2333794X21999154

Mohamed, S. M., Abonazel, M. R., & Ghallab, M. G. (2023). Performance Evaluation of Imputation Methods for Missing Data in Logistic Regression Model: Simulation and Application. Thailand Statistician, 21(4), 926–942.

Nuwabaine, L., Sserwanja, Q., Kamara, K., & Musaba, M. W. (2023). Prevalence and factors associated with teenage pregnancy in Sierra Leone: evidence from a nationally representative Demographic and Health Survey of 2019. BMC Public Health, 23(1), 1–8. https://doi.org/10.1186/s12889-023-15436-x

OMS. (2022). Embarazo en la adolescencia. Organización Mundial de La Salud. https://www.who.int/es/news-room/fact-sheets/detail/adolescent-pregnancy#

Ortiz, R. A., Otalora, M. F., Muriel, A. B., & Luna, D. A. (2018). Adolescencia como factor de riesgo para complicaciones maternas y neonatales. Revista Chilena de Obstetricia y Ginecologia, 83(5), 478–486. https:/www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75262018000500478

Pupo Jimenez, J. M., Gonzáles Aguilar, J. C., Cabrera Lavernia, J. O., & Cedaño Tarncón, O. (2019). Factores de riesgo de morbilidad materna extrema en la unidad de cuidados intensivos. Multimed, 23(2), 280–296. https://doi.org/10.25100/cm.v50i4.4197

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10.1056/nejmra1814259

Ruth, D., Rengel, E. M., Suarez, R., Ana, D., Rojas Rodríguez, L., Yadira, D., Cueva, G., Elizabeth, R., & Rengel, M. (2020). Una mirada distinta al embarazo adolescente tfm. Recimundo.Com, 228–235. https://doi.org/10.26820/recimundo/4.(4).noviembre.2020.228-235

Wickham, M. H., Chang, W., & Wickham, M. H. (2016). Package “ggplot2”. Create elegant data visualizations using the grammer of graphics. Version, 2(1), 1–89.