Exchange Rate forecast using Fuzzy Regression

Main Article Content

Pedro Wilson Paredes-Meriño
Yasmany Fernández-Fernández

Abstract

Forecasting the USD/COP exchange rate poses a significant challenge due to the complexity and volatility of financial markets. Traditionally, econometric models such as ARIMA have been used to predict these fluctuations; however, such approaches may fail to capture the uncertainty and imprecision inherent in financial data. The main objective of this study is to evaluate the effectiveness of Tanaka’s fuzzy regression in forecasting the USD/COP exchange rate. A quantitative approach was adopted, applying the fuzzy model to quarterly macroeconomic data from 2008 to 2024, including variables such as interest rate, inflation, GDP, trade balance, and foreign direct investment, among others.
The results show that Tanaka’s fuzzy regression produced a central forecast value of 3986.82 for the first quarter of 2024, with an uncertainty interval ranging from 653.97 to 7318.67. This interval contains the actual observed value of 3857, with a membership degree of 0.961. Compared to a SARIMA model, which produced a value of 4096.69, the fuzzy regression more comprehensively represents uncertainty, offering a spectrum of possible outcomes that is useful for financial decision-making. This approach provides more robust forecasts in volatile financial environments and can be applied to risk management, investment decisions, and strategic planning.

Downloads

Download data is not yet available.

Article Details

How to Cite
Paredes-Meriño, P., & Fernández-Fernández, Y. (2025). Exchange Rate forecast using Fuzzy Regression. 593 Digital Publisher CEIT, 10(3), 324-339. https://doi.org/10.33386/593dp.2025.3.3152
Section
Investigaciones /estudios empíricos
Author Biographies

Pedro Wilson Paredes-Meriño, Universidad Politécnica Estatal del Carchi - Ecuador

paredes.jpg

I graduated as an environmental engineer and now I am in the process of obtaining my first graduate degree in statistics.

My first experience in research was at the University while collaborating in a student grant, where I was looking to elaborate bio-fuel with unicellular algae.

Yasmany Fernández-Fernández, Universidad Politécnica Estatal del Carchi - Ecuador

fernadez.jpg

0000-0002-9530-4028

Yasmany Fernández currently does research in mathematics applied to engineering in multiple branches such as decision theory, factor analysis and study of linear and nonlinear models applied to engineering and process control. Areas of interest: Robust Optimization and decision theory applied in different branches of theoretical and practical sciences.

References

Barreto, I. M. O., Reyes, G. E., Martin-Fiorino, V., & Villalobos-Antúnez, J. V. (2021). Crisis empresarial, factores que influyen y alteran la gestión de las empresas en Colombia. Revista de Ciencias Sociales (Ve), 27(4), 93–110. https://www.redalyc.org/articulo.oa?id=28069360008

Levy, N., & Bustamante, J. (2019). Política monetaria y crecimiento económico: ¿qué pueden hacer los bancos centrales? Economía UNAM, 16(48), 146–167. https://doi.org/10.22201/fe.01851667p.2019.48.625

Caycedo, E. P., & Rondón, N. (2017). Estimación de parámetros para un modelo de regresión difusa simple. Universidad del Tolima.

Çetitav, B. (2012). Fuzzy linear regression. Dokuz Eylül University, Graduate School of Natural and Applied Sciences.

Comisión Económica para América Latina y el Caribe (CEPAL). (2020). Conceptos de las paridades de poder adquisitivo. Programa de Comparación Internacional en América Latina y el Caribe. https://www.cepal.org/sites/default/files/project/files/pci-conceptos-paridades-poder-adquisitivo_0.pdf

Daza, A. S. (2022). Información asimétrica y mercados financieros emergentes: el análisis de Mishkin. Obtenido de https://www.redalyc.org/pdf/413/41303402.pdf

De-los-Cobos, S. G., Goddard, J., & Gutiérrez, M. A. (2011). Regresión borrosa vs. regresión por mínimos cuadrados ordinarios: Caso de estudio. Revista de Matemática: Teoría y Aplicaciones, 18(1), 33-48.

Donoso Salgado, S. (2006). Análisis de regresión difusa: Nuevos enfoques y aplicaciones. Universidad de Granada.

CaixaBank Research. (2018, octubre 17). Crisis financiera turca: en tiempo de descuento. Focus. https://www.caixabankresearch.com

Gutiérrez, A., & Ferreira, W. (2020). Un modelo de regresión lineal aplicando lógica difusa. Revista Sextante, 23, 48-54.

Hamilton, J. D. (2009). Causes and consequences of the oil shock of 2007–08 (NBER Working Paper No. 15002). National Bureau of Economic Research. https://doi.org/10.3386/w15002

Herrera, O. M. (2021). La paridad del poder adquisitivo: nueva evidencia para Colombia y Latinoamérica.

Herzog, J. O. (2017). Fundamentos del tipo de cambio Inicio de una serie sobre tipos de cambio de equilibrio. Obtenido de https://www.bbvaresearch.com/wp-content/uploads/mult/120221_EconomicWatchEEUU_149_esp_tcm346-287981.pdf

Pérez Jurado, M., & Vega, J. L. (1993). Paridad del poder de compra: un análisis empírico (Documento de Trabajo No. 9322). Banco de España.

Karami, M., Shabanlou, S., Mazaheri, H., Mokhtari, S., & Najarchi, M. (2024). Integration of the non-linear time series GARCH model with fuzzy model optimized with water cycle algorithm for river streamflow forecasting. International Journal of Computational Intelligence Systems, 17, 156. https://doi.org/10.1007/s44196-024-00570-0

Kahraman, C., Bekese, A., & Bozbura, F. T. (2006). Fuzzy regression approaches and applications in Fuzzy Multi-Criteria Decision Making (pp. 589–615). Springer.

O’Dubhghaill, S., & Van Kerckhoven, S. (2021). Brexit, Englixit? Disintegration and how taking back control means giving up control. Comentario Internacional, 21, 99–112. https://doi.org/10.32719/26312549.2021.21.5

León Cristancho, S. J. (2015). Factores macroeconómicos que influyen en la volatilidad del índice accionario COLCAP [Trabajo de grado, Universidad EAFIT]. Repositorio Institucional EAFIT.

Malyarets, L., Dorokhov, O., & Dorokhova, L. (2018). Method of constructing the fuzzy regression model of bank competitiveness. Journal of Central Banking Theory and Practice, 2, 139–164.

Mishkin, F. S. (2008). Moneda, banca y mercados financieros (8ª ed.). Pearson Educación.

Muñoz, V. S. (2020). Teoría de la Paridad de Poder Adquisitivo (PPA): Aportes de Gustav Cassel sobre el tipo de cambio de equilibrio. Obtenido de https://www.redalyc.org/journal/290/29065286034/html/#:~:text=Seg%C3%BAn%20Dornbusch%20(1985)%2C%20la,precios%20relativos%20a%20los%20pa%C3%ADses.

Pesce, G. (2017). Finanzas internacionales: ¿Qué son las paridades y para qué se utilizan? Revista CEA, Centro de Estudios de Administración, 46–66.

Shapiro, A. F. (2005). Fuzzy regression models. Penn State University, Smeal College of Business.

Tanaka, H., & Lee, H. (1982). Possibilistic linear regression analysis for fuzzy data. Fuzzy Sets and Systems, 8(1), 95-106.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X